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Abstract  

The aim of this paper is to present a one-year performance analysis of four grid-connected PV systems 

installed at Ghardaia city in Algeria’s Sahara. The grid-connected PV systems are based on four different PV 

module technologies which are: monocrystalline silicon (m-Si), multi-crystalline silicon (mc-Si), cadmium 

telluride (Cd-Te) and amorphous (a-Si)  PV module technologies. The PV systems based on the thin film 

technologies have their performance ratio better throughout the year when the performance ratio of the mc-Si 

technology is better in the winter season. The a-Si PV system has its performance ratio about 6.13 % more 

better than mc-Si and 8.90 % better than m-Si. The AC energy produced with the a-Si PV system is 13.32 % 

more than what the mc-Si system produces. It was found that the a-Si PV system performs better than the 

other technologies under the Saharan climate conditions of Ghardaia city. The energy payback time (EPBT) 

and greenhouse gases (GHG) emissions of the different PV systems were analyzed. The EPBT and GHG 

emissions per year, vary from a minimum value of 2.8 years to a maximum value of 5.73 years and from 

13.24 tons to 32.03 tons of CO2/kWh for CdTe and m-Si respectively. The CdTe PV system performs better 

in terms of EPBT and GHG emissions compared to the other technologies (m-Si, mc-Si and a-Si) due to its 

low life cycle energy requirement. 

 

Keywords: Performance assessment, Saharan outdoor conditions, grid-connected PV, thin film photovoltaic modules,  

energy payback, greenhouse gases emissions. 

 

1. INTRODUCTION 

 

Renewable energy for sustainable development 

is now recognized as the key solution for the future 

generations. With the impact of global warming on 

the ecosystem and the human life, it is urgent to 

make more efforts for the energy transition [1, 2]. 

The photovoltaic energy can play important role in 

the long-term transition to a sustainable society [3–

5].  

In the recent years, the capacity of grid-

connected systems is growing faster and continues 

to represent the most of PV installations worldwide 

[4]. Therefore, the performance assessment of PV 

solar installations is becoming more and more 

crucial analysis task for researchers, investors and 

policymakers to reach a global roadmap for 

developing and deploying PV systems [6–8]. 

In 2016, the global production capacity 

exceeded 80 GW for PV modules where thin film 

production increased by 11%, which represents 6% 

of total global PV production [6, 9]. The increase of 

production of thin film PV technologies and the use 

of the different thin film PV modules in grid-

connected PV systems driven the worldwide 

researchers to establish a good knowledge of their 

energy performance under different outdoor 

conditions. 

In Iran, Edalati et al. [10] investigated the 

performance of two types of 5.52 kWp grid-

connected PV systems, the first one based on 

monocrystalline silicon (m-Si) PV modules and the 

second one on multi-crystalline silicon (mc-Si) PV 

modules. They found that the grid-connected PV 

system composed of mc-Si PV modules performs 

better especially in higher ambient and module 

temperature and they suggest to use mc-Si PV 

module technology in dry and hot regions. In 

southwestern of Malaysia, Humada et al. [11] 

evaluated the performance of two grid-connected 

photovoltaic (PV) systems (monocrystalline silicon, 

m-Si; copper–indium–diselenide; CIS). Their 

results show that efficiency of CIS technology was 

higher than the c-Si technology and the CIS 

technology exhibit higher performance in all 

evaluation parameters. Two power plants based on 

a-Si:H single-junction and c-Si PV modules were 

evaluated in the Republic of Korea by Myong et al. 
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[12]. The results of the energy evaluation showed 

that the a-Si:H single-junction PV plant energy 

output was 2.7% higher compared to the c-Si PV 

plant. A study and analysis of three on-grid PV 

systems were conducted under İzmit, Kocaeli 

weather conditions in Northwest of Turkey by 

Başoğlu et al. [13]. The three PV systems were 

installed by using crystalline (c-Si), multi-

crystalline (mc-Si) and cadmium–telluride (Cd-Te) 

modules. They concluded that PV system with (Cd-

Te) module technology performs more better than 

the others technologies with higher system quality. 

Wang at al. [14] analyzed the performance of three 

grid-connected PV systems in Spain. The three PV 

systems are mc-Si, a-Si and CdTe PV technologies 

basis. They found that the PV system of mc-Si 

performs more better than the others technologies. 

In the literature, there are some studies dealing 

with the analysis of the performance of grid-

connected PV plants under desert climate 

conditions. In Oman, Kazem et al. [15] analyzed a 

1.4 kW grid-connected PV system composed only 

of mc-Si PV modules for six months under desertic 

climate conditions. According to the results of their 

study, the performance factor, the capacity factor 

and the yield factor were 84.6%, 21% and 1875 kW 

h/kWp/year respectively. They also estimated the 

payback period which is about 11 years. In Chile, 

under a coastal desert climate conditions, Ferrada et 

al. [16] studied the performance of two on-grid PV 

systems composed of amorphous/microcrystalline 

silicon a-(Si/lc-Si) tandem thin films and 

monocrystalline silicon (m-Si) PV modules, 

respectively. They concluded that the PV system 

with m-Si performs more better than a-(Si/lc-Si) 

and gives some recommendations for cleaning a 

dust accumulation for each technology. Dabou et 

al.[17] investigated a 1.75 kWp grid-connected PV 

system installed in the Saharan city of Adrar 

located in the southwest of Algeria. The PV plant is 

composed only of m-Si PV modules. They analyzed 

the performance of the system in clear, cloudy and 

sandstorm days. They concluded that for such 

climate conditions of Algeria’s desert, the 

minimum values of reference yield, array yield, 

final yield were in sandstorm day due to low level 

of daily solar irradiation, and the minimum values 

of the performance ratio and efficiency of the PV 

module, system and inverter, and the maximum 

value of capture and system losses were in clear 

day due to high ambient temperature.   

This work presents an energy performance 

analysis and life cycle assessment (LCA) of four 

grid-connected PV systems based on four different 

PV module technologies which are: 

monocrystalline silicon (m-Si), multi-crystalline 

silicon (mc-Si), cadmium telluride (Cd-Te) and 

amorphous silicon (a-Si). The four PV plants are 

installed at Ghardaia city in the desert of Algeria. 

The period of the study includes twelve months of 

monitored data, from May 2015 to April 2016. 

The paper is organized as follows: Section 2 

shows a description of the PV power plants. The 

analysis method used to evaluate the performance 

of the PV plants and the LCA is described in 

Section 3. Section 4 shows the main results 

obtained and the discussion of the performance of 

each grid-connected PV system. Finally, in section 

5, the most relevant conclusions are summarised. 

 

2. PV POWER PLANTS DESCRIPTION 

 

The PV power plants installed in Ghardaia city 

located in the desert of Algeria with the following 

geographical coordinates 574 m of altitude, 

latitude:  32°36'2.43"N  of latitude and 3°42'6.32"E 

of longitude. Fig. 1, shows the geographical 

situation of Ghardaia city in Algeria’s Sahara and 

an overview of the PV power plants installation is 

depicted.  The PV power plants are four grid-

connected PV systems based on different PV 

module technologies that are monocrystalline 

silicon (m-Si), multi-crystalline silicon (mc-Si), 

cadmium telluride (Cd-Te) and amorphous (a-Si). 

The PV modules are set on a fixed support with 30° 

as titled angle and faced to the south.

 

 

Fig. 1. The geographical situation of Ghardaia city in Algeria’s Sahara (on the left), and an overview of the 

installation of the four grid-connected PV systems (on the right) 
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The main characteristics of each PV module 

technology are given in Table 1 and in Table 2, the 

specification of the grid-connected PV systems are 

reported. 

 
Table 1. Main characteristics of the different PV 

module technologies. 

Module technology m-Si mc-Si Cd-Te a-Si 

Maximum Power PM 

(Wp) 
250 235 80 103 

Short Circuit Current 

ISC (A) 
8.79 8.64 1.88 4 

Open circuit Voltage 

VOC (V) 
37.62 36.94 60.8 41.1 

Isc temperature 

coefficient (%/°C) 
0.03 0.04 0.04 0.08 

Voc temperature 

coefficient (%/°C) 
-0.34 -0.32 -0.27 -0.33 

PM temperature 

coefficient (%/°C) 
-0.43 -0.43 -0.25 -0.20 

Efficiency (%) 15.35 14.43 11.1 7.1 

Area (m2) 1.63 1.63 0.72 1.45 

Weight (kg) 21.5 21.5 12.0 20.8 

 

Table 2. Specification of the grid-connected PV 

systems. 

Type m-Si mc-Si CdTe a-Si 

N. of 

modules 
420 420 1260 972 

Series 20 20 12 18 

Parallels 21 21 105 54 

Pmax 

(kWp) 
105 98.7 100.8 100.116 

Ipm (A) 173.04 170.1 173.25 200.88 

Vpm (V) 607 580.8 582 608.4 

Isc (A) 184.59 181.44 197.4 222.48 

Voc (V) 752.4 738,8 729.6 813 

area 684.6 684.6 907.2 1409.4 

Capacity 96 96 96 96 

 

In order to measure the meteorological 

parameters such as irradiance, ambient temperature, 

relative humidity, speed and direction of wind and 

atmospheric pression, a weather station was 

installed nearby the PV installation. 

The monitoring system was set to measure and 

store the electrical and meteorological parameters 

every 1 hour. All meteorological sensors installed 

with the grid-connedted PV systems were supplied 

by LSI LASTEM Company. The irradiance was 

measured using DPA053 Pyranometer with a total 

accuracy of 5W/m2 for one day of measure and the 

ambient temperature and relative humidity were 

sensed by thermohygrometer DMA672.1 probe 

with temperature and relative humidity accuracy of 

±0.15 °C and ±3% respectively. The wind speed 

and direction were measured by DNA 121# with an 

accuracy of ±0.07 m/s and ±0.3 degrees of wind 

direction and the atmospheric pressure was 

measured by DQA240.1#C with uncertainty of 1 

hPa. The modules temperature were sensed using 

the platinum resistance thermometers PT100 type 

attached to the back surface of the modules with 

temperature range (-50 ÷ +80°C) and an accuracy 

of 0.15°C. All parameters were recorded by a data 

logger. 

Each grid-connected PV system is connected to 

the utility grid through an inverter equipped with a 

distributed control system and Profibus protocol 

communication. 

 

3. ANALYSIS METHOD 
 

3.1. Performance parameters 

The collected monitored data of the four grid-

connected PV systems are used to assess their 

performance and behavior in the Saharan climate 

conditions. The monitoring campaign includes 

twelve months of monitored data, from May 2015 

to April 2016. 

The data acquisition system allows collecting 

the sensed parameters that are in-plane irradiance, 

PV array temperature, array output voltage, current 

and power, output power inverter. The performance 

parameters  used to perform the PV power plants 

analysis and their evaluation are calculated as 

recommended by the IEC 61724 standard [18].  

The performance ratio is defined as the final 

yield YF divided by the reference yield YR [18, 19] : 

100
R

F

Y

Y
PR                                             (1) 

YF is defined as the daily AC energy output 

EAC of the system divided by the rated power of 

the installed PV array PSTC at standard test 

condition (STC) and its unit is kWh/kWp [18]. It is 

expressed as follows: 

STC

AC
F

P

E
Y                                                       (2) 

YR represents the number of hours per day 

during which the solar radiation would need to be at 

reference irradiance levels in order to contribute the 

same incident energy as was monitored [18]. It can 

be performed as follows:  

STC

meas

R
G

G
Y





                                           (3) 

Where Gmeas is the measured irradiance 

(W/m2), GSTC irradiance under standard condition 

test (W/m2) and  is the recording interval. 

The AC energy generated by the PV system is 

obtained as: 

 ACiAC PE                                             (4) 

Where PACi is the power supplied by the inverter 

to the grid utility in kW and EAC is expressed in 

kWh. 
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The system efficiency is calculated as follows: 




measA

AC
sys

GS

E


                                     (5) 

Where SA is the surface of the PV array. 

 

3.2. Life cycle assessment of the PV power plant- 

evaluation methodology  

The PV power plant produces the electricity 

from the solar energy, but in the same time 

consumes the energy throughout its life cycle.  

 Many researchers and manufacturers collected 

different data of the all components of the PV 

system, (modules, and balance of system BOS) to 

update the database. The LCA is used to study the 

energy payback performance of PV system, and 

also the effect to the environment throughout the 

life cycle. According to the International 

Organization for Standarization (ISO). In step to the 

ISO 14041- 1998, ISO 14042- 2000 and ISO14043- 

2000, the LCA methodology contains definition of 

goal and scope, inventory analysis, impact 

assessment and interpretation of results as is 

indicated in fig. 2. 

The energy requirement of transportation of the 

equipment’s is not considered in this study. 

 
Fig. 2. Framework of life cycle assessment 

 

Goal and scope 

The goal of this LCA study is to make an 

assessment of the environmental impact of the 

electricity generation by different grid-connected 

PV systems composed of different module 

technologies as detailed in section 2. 

The monocrystalline silicon and the 

multicrystalline silicon PV modules are constitute 

of 60 cells with a total cell area of 1.46m2 (0.156 x 

0.156 x 60), total area of 1.63m2 (1.645 x 0.990) 

and total cell area of the PV power plants (m-Si and 

mc-Si) are 613.27m2. For the area of the cadmium 

telluride and amorphous silicon PV modules are 

0.72m2 and 1.45m2 with a total cell area of the PV 

power plants are 907.2m2 (0.72 x 1260) and 

1409.4m2 (1.45 x 972) respectively. 

 
Inventory analysis - LCA boundaries 

Each PV power plant are composed of two 

principal parts, the first is the solar PV modules, 

and the BOS parts. The details of different 

productions stages were reported in the literature 

[20, 22, 23]. The cell of silicon crystalline (m-Si 

and mc-Si) is fabricated from quartz mining, than it 

is introduced in an arc furnace to metallurgical-

grade silicon (Mg-Si), and after this stage it will be 

purified into solar grade silicon (SoG-Si) the ingots 

of mc-Si will be cast and saw into wafers, and the 

m-Si goes through one more step which is 

Czochralski (CZ) recrystallization [20, 21] as is 

shown in fig. 3. The cells are encapsulated between 

glass panes and assembled by frame give as a PV 

module, and the number of the PV cell is according 

to the power of the PV module. For the CdTe 

module technology, it is made from the raw of 

material of Cu and Zn ores for Te, and Cd 

respectively, and in the end of the treatment process 

we obtain a module [20]. 

 
Fig. 3. Process step of manufacturing of crystalline and 

thin film silicon module (m-Si, mc-Si and a-Si) 

 

In additional of the PV modules connecting in 

series and or in parallel placed on metallic 

structure, and the Balance Of System BOS 

(inverter, transformer, junction box, cabling, array 

support, concrete etc…), we obtained a PV power 

plant. 

 

Energy requirements in the life cycle of PV 

systems 

Many researchers and manufacturers seeking 

about the energy requirement of the PV power 

plants and creates a database for different reasons, 

among to reduce the energy necessary to produce 

modules, and as result, to decrease the Energy 

payback times (EPBT). 
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 Solar PV modules  

Jinqing and Honxing [24], after the comparison 

study of the energy requirements between different 

PV technologies, monocrystalline silicon, 

multicrystalline silicon, cadmium telluride and 

amorphous silicon, the review of energy 

requirements during life cycle can vary from 2860 

to 5253 MJ/m2, 2699 to 5150 MJ/m2, 790 to 1803 

MJ/m2 and 710 to 1990 MJ/m2 respectively.  

The energy requirement for crystalline silicon 

PV technology (m-Si and mc-Si) is taken as it is 

estimated in [21, 24]. The average of 3860 MJ/m2 

and 5253 MJ/m2, and the average of 3065 MJ/m2, 

3120 MJ/m2 and 3940 MJ/m2 respectively.  There is 

one more step in the production process of 

monocrystalline PV module compared to the 

multicrystalline technology that is called 

Czochralski (CZ) recrystallization, this step gives a 

higher efficiency but consumes more energy in 

their manufacturing process, the reason of the 

higher value of energy requirement of m-Si 

compared to the mc-Si. For the thin film cadmium 

telluride and amorphous silicon the energy 

requirements are considered of 918 MJ/m2, and 

1202 MJ/m2 respectively [25]. Each PV technology 

has its own energy requirement, which is different 

from one technology to another, this difference is 

remarkable and especially, between crystalline 

silicon and thin-film. The difference is due to the 

manufacturing process and the materials used for 

each technology. We selected this value because 

this energy requirement included frame. 

 

 Balance of system (BOS)  

The Balance of system (BOS), defined all the 

equipment existing in the PV power plant, 

excepting the PV modules, like the array support 

structure, inverter, transformer, junction box, 

wiring, foundation concrete, etc… To obtain the 

total energy requirement of the PV power plant, it is 

necessary to know the energy requirement of the 

BOS components, and adding that of the PV 

modules. Therefore, the evaluated of energy 

required of each BOS components in MJp/kWp are, 

wiring 248 MJp/kWp, support structure 4459 

MJp/kWp, foundation concrete 2352 MJp/kWp and 

88402.17 MJ for the inverter of 100 kW, the 

embodied energy of the inverter includes the 

replacement of 10% of the equipment one every 10 

years [26]. 

The energy requirement for each components of 

BOS and of the four PV modules technologies   for 

each PV power plant is indicated in Table 3. 

 

3.3. Energy payback times (EPBT) and 

greenhouse-gas (GHG) emissions  

Energy payback times (EPBT) 

EPBT is defined as the years of operation of PV 

system to compensate the energy consumption from 

manufacturing of PV panels and the balance of 

system (BOS). The EPBT is expressed as follows: 

output

input

E

E
EPBT                                                (6) 

Where BOSPVinput EEE                         (7) 

EPV is the energy requirement of the PV panels 

during life cycle containing many processes like 

manufacturing, installation, operation and 

maintenance, and energy for decommissioning.  

EBOS is the energy input of the balance of system 

components including the energy requirement of all 

other components excepting the PV panels. Eoutput 

presents the electricity generated annually from a 

PV system, in term of primary energy, (MJ) [20, 

27]. 

 
Table 3. Energy required by the principal components 

of the four PV power plants technologies 

Component Energy required (GJ) 

Technology m-Si mc-Si CdTe a-Si 

PV 

modules 
3119.38 2310.52 832.81 1694.099 

Inverter 88.40 88.40 88.40 88.40 

Wiring 26.04 24.48 25 24.83 

Support 

structure 
468.19 440.10 449.47 446.42 

Fondation- 

concrete 
246.96 232.14 237.08 235.47 

Total 3948.98 3095.65 1632.76 2489.22 

Component Percentage (%) 

Technology m-Si mc-Si CdTe a-Si 
PV 

modules 
78.99 74.64 51.01 68.06 

Inverter 2.24 2.86 5.41 3.55 

Wiring 0.66 0.79 1.53 0.99 
Support 

structure 
11.86 14.22 27.53 17.93 

Fondation- 

concrete 
6.25 7.50 14.52 9.46 

Total 100 100 100 100 

 

Greenhouse-gas (GHG) emissions  

The PV power plant produces electricity from 

solar radiation. This technology is friendly for the 

environment because no longer consume of fossil 

fuels, so as a result, no emissions of GHG. but if we 

take a consideration, the life cycle assessment of 

each component of the PV power plant (PV module 

and BOS), we find, that the PV power plant 

consumes energy and emits GHG during their 

lifetime. 

In this study, GHG emission is considered as an 

equivalent of CO2. 

The emissions of CO2 per kWh of electricity 

consumed is approximately 0.73 kg of CO2/kWh 

[28]. The CO2 emissions (kg of CO2 per year) can 

be expressed as:  

t

input

L

E
CO

73.0
yearper  emissions2


             (8) 

Where Lt is the life time of the system in years. 

The total CO2 emissions (kg of CO2) over the 

life time can be calculated as: 
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73.0emissions2  inputETotalCO                  (9) 

To calculate the CO2 mitigation (kg of CO2) per 

year:  

0.73E)CO of (kg

 smitigation CO annual The

output2

2


                        (10)  

The total CO2 mitigations (kg of CO2) over the 

life time is expressed as: 

 
0.73E

lifetimeover  smitigation CO Total

output

2

 tL
            (11)           

Using the equations (9) and (11), we obtain: 

  73.0E)CO 

of (kg lifetimeover  mitigation CONet 

toutput2

2

 inputEL
      (12)  

 

4. RESULTS AND DISCUSSION 

 

4.1 Meteorological parameters 

To understand the behavior of the grid-

connected PV systems, the meteorological 

parameters recorded during the monitoring 

campaign are analyzed. To clearly analyzed the 

weather conditions that the PV systems were faced, 

the meteorological parameters were calculated 

during sun hours based on monthly daily average 

values.  

Fig. 4, shows the percentage distribution of 

annual daily in-plane irradiation received on the PV 

arrays. The 85.46 % of the daily in-plane irradiation 

occurs between 5.5 kWh/m2 and 8.5 kWh/m2. It is 

clear that the most frequent values of daily in-plane 

irradiation are concentrated around high values of 

irradiation which is typical of the Saharan climate. 

 
Fig. 4. Percentage distribution of annual daily in-plane 

irradiation received on the PV arrays. 

 

In fig. 5, the percentage distribution of annual 

daily in-plane irradiation received on the PV arrays 

function of the daily average ambient temperature 

is depicted. The 67.66% of daily in-plane 

irradiation is located between 22.5 °C and 47.7 °C 

of ambient temperature. 

 
Fig. 5. Percentage distribution of annual daily in-plane 

irradiation received on the PV arrays function of the daily 

average ambient temperature. 

 

Table 4 summarizes the monthly daily average 

and annual average meteorological parameters and 

their standard deviations. The monthly daily 

average irradiation ranges from 5.29 kWh/m2 in 

September to 7.56 kWh/m2 in May. The PV arrays 

received an annual daily average irradiation of 6.38 

kWh/m2. The ambient temperature and irradiation 

have a crucial influence on the PV plants outputs, 

knowing that they have a close correlation to the 

modules temperature. The monthly daily average 

ambient temperature varies from 17.81 °C in 

December to 44.70 °C in August with an annual 

daily average value of 29.57 °C. The monthly daily 

average wind speed reaches the lowest value of 

1.07 m/s in November to the highest value of 5.51 

m/s in April with an annual average value of 3.56 

m/s. The monthly daily average relative humidity 

ranges from 9.48 % in May to 47.49 % in 

November with an annual average value of 29.91 

%. The monthly daily average atmospheric pressure 

varies from its lowest value of 943.08 hPa in April 

to its highest value of 964.74 hPa in December with 

an annual average value of 954.17 hPa. 

The high values of irradiation and ambient 

temperature are recorded in the months of May and 

August respectively. The Saharan environment is 

renowned by low values of relative humidity, high 

irradiation and high values of ambient temperature 

recorded usually in August that can exceed 45°C as 

maximum value.  

 

4.2. Performance parameters results 

Data recorded from May 2015 to April 2016 

were used to compute the monthly average daily 

performance parameters of each PV system 

technology. Fig. 6, shows the monthly average 

daily performance ratio of the grid-connected PV 

systems. The PV system based on m-Si technology 

has a performance ratio that varies from 74.77 % in 

August to 82.95 % in March. The performance ratio 

of mc-Si PV system ranges from 76.06 % in 

September to 87.92 % in February. For the PV 
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systems based on the thin films technologies, Cd-Te 

and a-Si, their performance ratios vary from 79.81 

% in August to 88.37 % in February and from 82.02 

% in April to 89.99 % in July respectively. 

 
Table 4. Monthly daily average and annual daily 

average meteorological parameters and their standard 

deviations 

Year/Month 

 

Irradiation 

(kWh/m2) 

Ambient 

temperature 

(°C) 

Relative 

humidity 

(%) 

 Mean STD Mean STD Mean STD 

2015/05 7.56 0.10 39.48 6.77 3.40 1.46 

2015/06 6.95 0.46 34.06 4.78 5.44 2.10 

2015/07 7.11 0.10 38.70 4.66 3.96 1.73 

2015/08 6.50 0.69 44.70 5.54 3.51 3.32 

2015/09 6.06 0.54 35.04 3.77 3.03 1.98 

2015/10 7.09 0.28 33.38 5.69 3.53 2.05 

2015/11 5.29 1.45 25.68 3.67 1.07 37.79 

2015/12 6.06 0.55 17.81 5.44 1.66 1.05 

2016/01 5.50 0.86 20.68 5.47 4.06 2.81 

2016/02 6.03 1.18 20.19 5.23 2.89 2.17 

2016/03 6.90 0.89 21.33 5.71 4.43 2.09 

2016/04 5.88 2.23 24.32 5.76 5.51 2.75 

Annual 

Avg 
6.41 0.78 29.61 5.21 3.54 5.11 

Year/Month 

 

Wind speed 

(m/s) 

Relative 

humidity (%) 

Atmospheri

c pressure 

(hPa) 

 Mean STD Mean STD Mean STD 

2015/05 3.40 1.46 9.48 6.54 954.34 3.15 

2015/06 5.44 2.10 22.43 6.40 953.63 1.42 

2015/07 3.96 1.73 20.31 6.60 954.28 2.06 

2015/08 3.51 3.32 12.94 6.08 951.29 1.71 

2015/09 3.03 1.98 20.64 8.48 951.17 1.15 

2015/10 3.53 2.05 31.81 12.11 955.05 3.52 

2015/11 1.07 37.79 47.49 11.98 957.67 2.58 

2015/12 1.66 1.05 48.22 17.25 964.74 1.26 

2016/01 4.06 2.81 34.32 12.39 954.25 4.56 

2016/02 2.89 2.17 38.63 10.74 961.12 2.42 

2016/03 4.43 2.09 29.07 14.96 948.69 4.88 

2016/04 5.51 2.75 39.09 18.00 943.08 5.12 

Annual Avg 3.54 5.11 29.54 10.96 954.11 2.82 

 

The PV systems of the thin film technologies 

perform better through the year when the mc-Si 

technolgy performs better in the winter season. 

It can be noticed that a seasonal trend of the 

grid-connected PV systems monthly average daily 

performance ratio is observed and it is different 

from technology to another. This seasonal trend in 

performance ratio was also observed in tropical 

desert maritime climate conditions by Daher et al. 

[29] and in the south of the Mediterranean climate 

by Phinikarides et al. [30]. 

 
Fig. 6. Monthly average daily performance ratio 

 

In fig. 7, the monthly average daily final yield 

and reference yield are depicted. The reference 

yield varies from its high value of 7.56 hours in 

May to low value of 5.29 hours in September. The 

final yield of all technologies follow the same trend 

as the reference yield. The thin film technologies 

Cd-Te and a-Si have a better final yield in all 

seasons. The a-Si technology has its final yield 

better in the summer when the Cd-Te in the spring 

and the winter. 

 
Fig. 7. Monthly average daily final yield and 

reference yield. 

 

The monthly average daily AC energy output is 

shown in fig. 8. Both thin film technologies have 

their AC energy outputs vary from their lowest 

values in September to their highest values in 

August. The Cd-Te final yield ranges from 452.16 

kWh to 627.49 kWh when the a-Si final yield varies 

from 437.56 kWh to 665.59 kWh. 

The grid-connected PV systems based on thin 

film module technologies generate more AC energy 

than the PV systems based on silicon technologies 

through the year except in December and January 

where the m-Si system generates more AC energy 

than all the others technologies.    
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Fig. 8. Monthly average daily AC energy generated. 

 

Fig. 9 shows the efficiencies of PV systems. 

The efficiency of m-Si PV system varies from 

12.10 % in August to 13.43 % in March, when the 

mc-Si PV system efficiency ranges from 11.57 % in 

September to 13.38 % in February. For the thin film 

technologies Cd-Te and a-Si, their PV systems 

efficiencies vary from 8.87 % in August to 9.82 % 

in February and from 5.83 % in April to 6.39 in 

July respectively. 

The Cd-Te, m-Si and mc-Si technologies have 

their efficiencies better in the winter and in the 

other hand the a-Si technology efficiency is better 

in the summer. 

 
Fig. 9. Monthly average daily systems efficiency. 

 

Table 5 summarizes the annual daily average 

performance parameters and their respective 

standard deviations. The a-Si PV system has the 

better annual average daily performance ratio of 

87.17 % , the higher final yield of 5.58 kWh/kWp 

and the better AC output energy of 558.64 kWh. 

The a-Si PV system has its performance ratio 

about 3.17 % more better than the Cd-Te, 6.13 % 

more better than mc-Si and 8.90 % better than m-

Si. 

The AC energy produced with the a-Si PV 

system is 13.32 % more than what the mc-Si system 

produces. 

Despite its low efficiency, the a-Si PV system 

performs better than the other technologies under 

the Saharan climate conditions of Ghardaia city. 

 
Table 5. Annual daily average performance ratio, 

final yield, AC energy output and system efficiency and 

their respective standard deviations. 

PV system Daily PR (%) 
Daily final yield 

(kWh/kWp) 

 Mean STD Mean STD 

m-Si 79.41 2.69 5.00 0.58 

mc-Si 81.83 2.42 4.91 0.60 

CdTe 84.41 2.36 5.41 0.65 

a-Si 87.17 2.17 5.58 0.65 

PV system 
Daily AC energy 

(kWh) 

Daily system 

efficiency (%) 

 Mean STD Mean STD 

m-Si 524.56 60.50 12.86 0.43 

mc-Si 484.25 59.31 12.45 0.37 

CdTe 545.17 65.61 9.38 0.26 

a-Si 558.64 65.08 6.19 0.15 

 

4.3. EPBT and GHG emissions results 

Table 6 shows the energy payback time for each 

grid-connected PV systems, and the different 

parameters of CO2 emissions, the results obtained 

in the present study concerned the EPBT was 

calculated using the Eqs.(6) and (7) and from the 

eqs (8) to (12) are used to calculate CO2 emissions, 

total CO2 emission, CO2 mitigations, CO2 

mitigation over lifetime and net CO2 mitigation 

over lifetime respectively. 

 

Table 6. The energy payback time for each PV 

system and CO2 results. 

PV 

system 

EPBT 

(years) 

CO2 

emissions 

(tons of 

CO2/year) 

Annual CO2 

mitigation 

(tons of CO2) 

Net CO2 

mitigation over 

life time (Tons) 

m-Si 5.73 32.03 139.77 2693.5 

mc-Si 4.86 25.11 129.03 2598 

CdTe 2.8 13.24 145.26 3300.5 

a-Si 3.39 20.19 148.85 3216.5 

 

From the results obtained in Table 6. It is 

observed that the EPBT is low for CdTe PV 

technology with value of 2.8 years compared with 

others PV technologies of 3.39 yrs, 4.86 yrs and 

5.73 yrs for a-Si, mc-Si and m-Si respectively. This 

difference between different PV technologies is due 

mainly to the amount of energy consumed during 

the manufacturing process, when the m-Si 

consumes more energy compared to the mc-Si and 

the thin film technology (a-Si and CdTe). The CO2 

emissions (tons of CO2/year) is inversely 

proportional to the CO2 mitigation (tons of CO2), 

when the CdTe PV technology has a low value of 

the CO2 emissions of 13.24 (tons of CO2/year) with 

high value of net CO2 mitigation of 3300.5 (tons). 
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5. CONCLUSION 

 

The evaluation of four grid-connected PV 

systems based on different PV module technologies 

is conducted under Saharan environment climate 

conditions at Ghardaia city in Algeria. Two 

technologies are based upon the following silicon 

based technologies: monocrystalline silicon (m-Si) 

and mc-Si (multi-crystalline) and two other ones 

are thin film technologies, cadmium telluride (Cd-

Te) and amorphous (a-Si). 

The PV array of the grid-connected systems are 

faced to a high annual daily average irradiation of 

6.38 kWh/m2 and a high annual daily average 

ambient temperature of 29.57 °C. The ambient 

temperature in such area can reach 45 °C especially 

in August. It was observed that a 67.66% of daily 

in-plane irradiation occurs between 22.5 °C and 

47.7 °C of ambient temperature. 

Data recorded during the monitoring campaign 

from May 2015 to April 2016 were used to asess 

the performance of the PV systems. The PV 

systems based on the thin film technologies have 

their performance ratio better through the year 

when the performance ratio of the mc-Si technolgy 

is better in the winter season. The Cd-Te and a-Si 

technologies have a better final yield in all seasons. 

The a-Si technology has its final yield better in the 

summer when the Cd-Te in the spring and the 

winter. 

The Cd-Te, m-Si and mc-Si technologies have 

their efficiencies better in the winter and in the 

other hand the a-Si technology efficiency is better 

in the summer. The a-Si PV system has the better 

annual average daily performance ratio of 87.17 %, 

the higher final yield of 5.58 kWh/kWp and the 

better AC output energy of 558.64 kWh. 

The a-Si PV system has its performance ratio 

about 3.17 % better than the Cd-Te, 6.13 % better 

than mc-Si and 8.90 % better than m-Si. 

The AC energy produced with the a-Si PV 

system is 13.32 % more than what the mc-Si system 

produces. Despite its low efficiency, It can be 

concluded that the a-Si PV system performs better 

than the other technologies under the Saharan 

climate conditions of Ghardaia city. 

The EPBT is higher for thin film than the 

crystalline PV technology, it vary between 2.8 and 

5.73 years (2.8 yrs for CdTe, 3.39 for a-Si, 4.86 yrs 

for mc-Si and 5.73 for m-si). Hence, the EPBT will 

be higher if the process of manufacture of the BOS 

of the grid-connected PV system and especially PV 

modules consumed more energy. 

The CO2 emissions, range from 13.24 (tons of 

CO2/year) for CdTe to 32.03 (tons of CO2/year) for 

m-Si. 
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